DEMOSTRACIONES CON ENCANTO

DEMOSTRACIONES CON ENCANTO

UN VIAJE POR LAS MATEMÁTICAS ELEGANTES

ALSINA I CATALÀ, CLAUDI / NELSEN , ROGER B.

20,21 €
IVA incluido
Consultar disponibilidad
Editorial:
SM
Año de edición:
2021
Materia
Sociedad y ciencias sociales
ISBN:
978-84-1318-779-2
Páginas:
292
Encuadernación:
Rústica
20,21 €
IVA incluido
Consultar disponibilidad
Añadir a favoritos

Prólogo....................................................................11Introducción........................................................... 15Capítulo 1. Un jardín de enteros.................................................................... 211.1. Números figurados.................................................................211.2. Sumas de cuadrados, cubos y números triangulares............................................................ 261.3. Hay infinitos primos.................................................................... 291.4. Números de Fibonacci................................................................ 321.5. El teorema de Fermat.................................................................... 351.6. El teorema de Wilson.................................................................... 351.7. Números perfectos................................................................. 361.8. Desafíos.................................................................  37Capítulo 2. Números ilustres.................................................................... 392.1. La irracionalidad de 2............................................................................. 402.2. La irracionalidad de k cuando k no es un cuadrado perfecto.................................................. 412.3. La razón áurea...................................................................... 422.4. La circunferencia y p............................................................................. 452.5. La irracionalidad de p............................................................................. 472.6. El conde de Buffon y su aguja...................................................................... 482.7. El número e como límite..................................................................... 492.8. Una serie infinita para e............................................................................ 522.9. La irracionalidad de e............................................................................ 522.10. El problema de Steiner sobre el número e............................................................................ 532.11. La constante de Euler-Mascheroni........................................................... 532.12. Exponentes racionales e irracionales........................................................... 552.13. Desafíos................................................................ 56Capítulo 3. Puntos en el plano..................................................................... 593.1. La fórmula de Pick....................................................................... 593.2. Circunferencias y sumas de dos cuadrados.............................................................. 613.3. El teorema de Sylvester-Gallai.................................................................... 633.4. Partiendo en dos un conjunto de cien mil puntos................................................................... 643.5. Palomas y palomares............................................................. 653.6. Asignando números a los puntos del plano..................................................................... 663.7. Desafíos......................................................... 68Capítulo 4. El patio de recreo de los polígonos.............................................................. 694.1. Combinatoria poligonal............................................................... 694. 2. Dibujar un polígono conocidas las longitudes de sus lados................................................................ 724.3. Los teoremas de Maekawa y Kawasaki............................................................... 734.4. Cuadratura de polígonos............................................................... 754.5. Las estrellas del patio de los polígonos............................................................... 764.6. Los vigilantes de la galería de arte......................................................................... 784.7. Triangulaciones de polígonos convexos................................................................ 804.8. Cicloides, ciclógonos y cicloides poligonales............................................................. 834.9. Desafíos.................................................................. 85Capítulo 5. Un tesoro de teoremas sobre triángulos................................................................ 875.1. El teorema de Pitágoras................................................................. 875.2. Parentescos pitagóricos.............................................................. 885.3. El radio de la circunferencia inscrita en un triángulo rectángulo ............................................... 915.4. La generalización de Pappus del teorema de Pitágoras................................................................. 925.5. La circunferencia inscrita y la fórmula de Herón...................................................................... 935.6. La circunferencia circunscrita y la desigualdad triangular de Euler ................................................. 955.7. El triángulo órtico...................................................................... 965.8. La desigualdad de Erdo?s-Mordell................................................................... 975.9. El teorema de Steiner-Lehmus................................................................... 995.10. Las medianas de un triángulo............................................................... 1005.11. ¿Son obtusángulos la mayoría de los triángulos?............................................................ 1025.12. Desafíos................................................................ 103Capítulo 6. El embrujo del triángulo equilátero.............................................................. 1056.1. Teoremas de estilo pitagórico.............................................................. 1056.2. El punto de Fermat de un triángulo............................................................... 1086.3. El teorema de Viviani.................................................................. 1096.4. Una teselación triangular del plano y la desigualdad de Weitzenböck................................ 1106.5. El teorema de Napoleón.............................................................. 1126.6. El milagro de Morley.................................................................. 1136.7. El teorema de Van Schooten............................................................... 1156.8. El triángulo equilátero y la razón áurea..................................................................... 1166.9. Desafíos......................................................... 117Capítulo 7. El rincón de los cuadriláteros......................................................... 1197.1. Puntos medios en cuadriláteros......................................................... 1197. 2. Cuadriláteros cíclicos................................................................. 1217.3. Igualdades y desigualdades en un cuadrilátero.......................................................... 1237.4. Cuadriláteros tangenciales y bicéntricos............................................................ 1267.5. Los teoremas de Anne y Newton................................................................. 1277.6. Pitágoras con un paralelogramo y triángulos equiláteros ........................................................... 1297.7. Desafíos........................................................ 130Capítulo 8. Cuadrados por todas partes.................................................................... 1338.1. Teoremas con un cuadrado............................................................... 1338.2. Teoremas con dos cuadrados.............................................................. 1358.3. Teoremas con tres cuadrados.............................................................. 1408.4. Con cuatro y más cuadrados.............................................................. 1428.5. Cuadrados y matemáticas recreativas............................................................ 1448.6. Desafíos......................................................... 146Capítulo 9. Curvas a la vista .............................................................................  149 Cuadraturas de lúnulas ............................................................................. 1499.2. La asombrosa espiral de Arquímedes ............................................................................ 1559.3. La cuadratriz de Hipias................................................................. 1579.4. El cuchillo de zapatero y la bodega de sal....................................................................... 1589.5. Las cónicas según Quetelet y Dandelin ............................................................................ 1609.6. Triángulos de Arquímedes.........................................................1619.7. Hélices............................................................... 1649.8. Desafíos.............................................................. 165Capítulo 10. Aventuras con embaldosados y coloreados........................................................... 16910.1. Embaldosados y teselaciones del plano................................................................... 17010.2. Embaldosados con triángulos y cuadriláteros....................................................... 17410.3. Infinitas demostraciones del teorema de Pitágoras............................................................. 17710.4. La rana saltarina............................................................... 17910.5. Los siete frisos.................................................................... 18110.6. Demostraciones coloridas ....................................................................................... 18410.7. El dodecaedro y los caminos hamiltonianos.......................................................... 19210.8. Desafíos..................................................................................................................... 194Capítulo 11. Geometría en tres dimensiones...................................................... 19711.1. El teorema de Pitágoras en tres dimensiones....................................................... 19811.2. Particiones del espacio con planos........................................................................ 19911.3. Triángulos correspondientes en tres rectas.......................................................... 20111.4. Un cono que triseca ángulos ................................................................................. 20111.5. La intersección de tres superficies esféricas......................................................... 20211.6. La cuarta circunferencia......................................................................................... 20411.7. El área del triángulo esférico................................................................................. 20511.8. La fórmula de Euler para poliedros....................................................................... 20611.9. Caras y vértices de poliedros convexos................................................................. 20711.10. ¿Por qué se repiten las formas de algunas caras de los poliedros?..................... 20911.11. Euler y Descartes à la Pólya................................................................................... 21011.12. Cuadriculando cuadrados y cubiculando cubos................................................... 21111.13. Desafíos................................................................................................................... 213Capítulo 12. El patio de recreo de los polígonos................................................ 21512.1. Conjuntos numerables y no numerables.............................................................. 21512.2. El teorema de Cantor-Schröder-Bernstein............................................................ 21712.3. La desigualdad de Cauchy-Schwarz...................................................................... 21812.4. La desigualdad entre la media aritmética y la media geométrica....................... 22012.5. Dos perlas del origami............................................................................................ 22112.6. ¿Cómo dibujar una línea recta?.............................................................................. 22312.7. Algunas joyas de las ecuaciones funcionales....................................................... 22512.8. Desigualdades funcionales.................................................................................... 23012.9. La serie de Euler para p2/6..................................................................................... 23312.10. El producto de Wallis.............................................................................................. 23512.11. La aproximación de Stirling para n!...................................................................... 23612.12. Desafíos................................................................................................................... 238Soluciones a los desafíos........................................................................................... 241Capítulo 1........................................................................................................................... 241Capítulo 2........................................................................................................................... 243Capítulo 3........................................................................................................................... 247Capítulo 4........................................................................................................................... 249Capítulo 5........................................................................................................................... 251Capítulo 6........................................................................................................................... 255Capítulo 7........................................................................................................................... 258Capítulo 8........................................................................................................................... 261Capítulo 9........................................................................................................................... 262Capítulo 10......................................................................................................................... 265Capítulo 11.......................................................................................................................... 269Capítulo 12......................................................................................................................... 270Referencias bibliográficas......................................................................................... 273Índice por palabras...................................................................................................... 283Sobre los autores........................................................................................................... 289

Esta obra presenta una colección de demostraciones notables en matemáticas elementales, sobre números, geometría, desigualdades, funciones, origami, teselaciones, de una elegancia excepcional, sucintas e ingeniosas.  A través de razonamientos sorprendentes o de potentes representaciones visuales, esperamos que esta selección de demostraciones invite a los lectores a disfrutar de la belleza de las matemáticas.Además, cada capítulo concluye con desafíos al lector —se plantean alrededor de ciento treinta—, a quien animamos a que busque por sí mismo demostraciones con encanto y a compartir sus descubrimientos con otros. 

Artículos relacionados

  • MUJERES CON TDAH. UNA GUÍA RADICAL
    SOLDEN, SARI / FRANK, DRA. MICHELLE
    ¡Vive con valentía como mujer con TDAH! Esta guía radical te mostrará cómo cultivar tus aptitudes, honrar tu neurodivergencia y aprender a comunicarte con claridad y confianza. Si eres una mujer con trastorno por déficit de atención con hiperactividad (TDAH), probablemente has sabido toda tu vida que eres diferente. De niñas, aprendemos qué comportamientos, estilos de aprendiza...
    En stock

    15,34 €

  • LIBERTAD PARA TODAS
    RICORDEAU, GWENOLA
    Comprender cómo se ha tejido nuestra dependencia del sistema penal es una tarea larga y minuciosa, donde, en ocasiones, las luchas feministas y por la abolición del sistema penal y de las prisiones se han mostrado antagónicas. Esta obra pretende desentrañar este nudo, explorando la protección que las mujeres pueden (o no) esperar del sistema penal y pone de relieve cómo les afe...
    En stock

    20,19 €

  • EL PODER DE LA VERDAD
    FERNANDEZ, NEVENKA
    ¿Qué pasó con Nevenka tras el «caso Nevenka»? Nevenka Fernández se convirtió en una figura pública por ser la primera mujer en conseguir una sentencia condenatoria por acoso sexual en el ámbito laboral contra un político, convirtiendo el caso que lleva su nombre en un hito histórico de la lucha contra la violencia de género en España. Nevenka tuvo que enfrentarse no solo al pr...
    En stock

    21,06 €

  • BATCH PLAYING
    VELA, PRISCILLA
    Una propuesta de lo más original y práctica para alimentar el juego creativo en los niños. ¿Te imaginas un libro de recetas con «superalimentos» para que, con el mínimo tiempo de preparación, los niños obtengan la máxima nutrición y que, encima, les guste tanto como una pizza Pues esto es justamente Batch Playing, una divertida e innovadora fusión entre el batch cooking y el ju...
    En stock

    17,26 €

  • ASAMBLEA EN CLASE, LA: TECNICAS Y RECURSOS
    ROMERA, MAR / MARTINEZ, OLGA
    La asamblea en el aula puede convertirse en el eje transformador de la experiencia educativa. A través de reflexiones sobre historia, política, filosofía y vida, este libro invita a repensar la escuela como un espacio que despierta el pensamiento crítico y creativo. Inspirándose en la propuesta de Célestin Freinet y en el modelo Educar con 3 ces (capacidades, competencias y cor...
    En stock

    24,81 €

  • CEREBRO Y PANTALLAS
    COUSO, MARIA
    EL LIBRO PARA CONOCER LOS EFECTOS DE UNA EXPOSICIÓN PRECOZ Y MAL GESTIONADA DE LAS PANTALLAS EN LA INFANCIA Y PODER EVITARLOS.El impacto grave que supone una prematura exposición a las pantallas durante la infancia y la falta de control en la adolescencia es un hecho. Cuando la tecnología ya está en cada una de las habitaciones de nuestros hogares y escuelas, tanto las familias...
    En stock

    19,13 €